If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12w^2+4w=0
a = 12; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·12·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*12}=\frac{-8}{24} =-1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*12}=\frac{0}{24} =0 $
| 7+x=3x-15 | | 9=6v+3v | | 7x-x-1=-7x+21 | | 1/4(2x+4)=8 | | 3/4x-6=-4x+6 | | 6+7x+x=6 | | 160=4(4b+8) | | 4x+(2x-22)+(x+20)=180 | | 3/4(24x-16)=78 | | Y=0.2x+10.3 | | 8+x+x-1=x+3+2-x | | -4a+9=21 | | 3(x+3)-2(x-1)=5(x-5 | | 20=12y/6454000 | | 4x+3/7+2/1=x+5/2 | | 50-3*3^2+6^2=x | | 195=5(3+6r) | | -4x+8x-8=4(x-2)-6 | | 5w^2-490=0 | | 3x^2-6=9x-6 | | -3p-7(-3-3p)=147 | | 5−x+1=2 | | 9+4x=(-15) | | 8+x+x-1=x+3+x+2-x | | 50-3x3²+6²=x | | x2−84=2x−4 | | -30=5(x=7=x | | 9+4y=-7+2y | | 12(6x-5)=120x | | 50-3*3²+6²=x | | 6(1+2b)+7=85 | | 6−7d=6−2d |